Категории

Кодирование графических файлов

A8. Кодирование звуковой информации

Кодирование графической информации

Кодирование графической информации

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную.

Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла. Файл является основной структурной единицей организации и хранения данных в компьютере и в данном случае должен содержать информацию о том, как представить этот набор точек на экране монитора.

Файлы, созданные на основе векторной графики, содержат информацию в виде математических зависимостей (математических функций, описывающих линейные зависимости) и соответствующих данных о том, как построить изображение объекта с помощью отрезков линий (векторов) при выводе его на экран монитора компьютера.

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

В процессе кодирования изображения производится его пространственная дискретизация, т. е. изображение разбивается на отдельные точки и каждой точке задается код цвета (желтый, красный, синий и т. д.). Для кодирования каждой точки цветного графического изображения применяется принцип декомпозиции произвольного цвета на основные его составляющие, в качестве которых используют три основных цвета: красный (английское слово Red, обозначают буквой К), зеленый (Green, обозначают буквой G), синий (Blue, обозначают букой В). Любой цвет точки, воспринимаемый человеческим глазом, можно получить путем аддитивного (пропорционального) сложения (смешения) трех основных цветов – красного, зеленого и синего. Такая система кодирования называется цветовой системой RGB. Файлы графических изображений, в которых применяется цветовая система RGB, представляют каждую точку изображения в виде цветового триплета – трех числовых величин R, G и В, соответствующих интенсивностям красного, зеленого и синего цветов. Процесс кодирования графического изображения осуществляется с помощью различных технических средств (сканера, цифрового фотоаппарата, цифровой видеокамеры и т. д.); в результате получается растровое изображение. При воспроизведении цветных графических изображений на экране цветного монитора компьютера цвет каждой точки (пикселя) такого изображения получается путем смешения трех основных цветов R,G и B.

Качество растрового изображения определяется двумя основными параметрами – разрешением (количеством точек по горизонтали и вертикали) и используемой палитрой цветов (количеством задаваемых цветов для каждой точки изображения). Разрешение задается указанием числа точек по горизонтали и по вертикали, например 800 на 600 точек.

Между количеством цветов, задаваемых точке растрового изображения, и количеством информации, которое необходимо выделить для хранения цвета точки, существует зависимость, определяемая соотношением (формула Р. Хартли) :

где I – количество информации; N – количество цветов, задаваемых точке.

Количество информации, необходимое для хранения цвета точки, называют также глубиной цвета, или качеством цветопередачи.

Так, если количество цветов, задаваемых для точки изображения, N = 256, то количество информации необходимое для ее хранения (глубина цвета) в соответствии с формулой (3.1) будет равно I = 8 бит.

В компьютерах для отображения графической информации используются различные графические режимы работы монитора. Здесь необходимо отметить, что кроме графического режима работы монитора есть также текстовый режим, при котором экран монитора условно разбивается на 25 строк по 80 символов в строке. Эти графические режимы характеризуются разрешением экрана монитора и качеством цветопередачи (глубиной цвета). Для установки графического режима экрана монитора в операционной системе MS Windows ХР необходимо выполнить команду: [Кнопка Пуск – Настройка – Панель управления – Экран]. В появившемся диалоговом окне «Свойства: Экран» (рис. 3.12) необходимо выбрать вкладку «Параметры» и с помощью ползунка «Разрешение экрана» выбрать соответствующее разрешение экрана (800 на 600 точек, 1024 на 768 точек и т. д.). С помощью раскрывающегося списка «Качество цветопередачи» можно выбрать глубину цвета – «Самое высокое (32 бита)», «Среднее (16 бит)» и т. д., при этом количество цветов, задаваемых каждой точке изображения, будет соответственно равно 2 (4294967296), 2 (65536) и т. д.

Рис. 3.12. Диалоговое окно «Свойства: Экран»

Для реализации каждого из графических режимов экрана монитора необходим определенный информационный объем видеопамяти компьютера. Необходимый информационный объем видеопамяти (V) определяется из соотношения

где К – количество точек изображения на экране монитора (К = А · В); А – количество точек по горизонтали на экране монитора; В – количество точек по вертикали на экране монитора; I – количество информации (глубина цвета).

Так, если экран монитора имеет разрешающую способность 1024 на 768 точек и палитру, состоящую из 65 536 цветов, то глубина цвета в соответствии с формулой (3.1) составит I = log65 538 = 16 бит, количество точек изображения будет равно: К = 1024 х 768 = 786432, и требуемый информационный объем видеопамяти в соответствии с (3.2) будет равен

V = 786432 · 16 бит = 12582912 бит = 1572864 байт = 1536 Кбайт = 1,5 Мбайт.

В заключение необходимо заметить, что кроме перечисленныхарактеристик важнейшими характеристиками монитора являются геометрические размеры его экрана и точки изображения. Геометрические размеры экрана задаются величиной диагонали монитора. Величина диагонали мониторов задается в дюймах (1 дюйм = 1" = 25,4 мм) и может принимать значения, равные: 14", 15", 17", 21" т. д. Современные технологии производства мониторов могут обеспечить размер точки изображения равный 0,22 мм.

Таким образом, для каждого монитора существует физически максимально возможная разрешающая способность экрана, определяемая величиной его диагонали и размером точки изображения.

Источник: http://comnew.storyo.ru/text/yashin/10.htm

Презентация на тему "Кодирование графической информации"

Кодирование графических файлов. Понятие пикселя. Векторная и растровая графика. Зависимость качества кодирования от размеров растра и количества используемых цветов. Понятие глубины цвета. Формула расчета объема файла. Разрешающая способность экрана.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кодирование графических файлов

Кодирование - это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы. Все компьютерные графические изображения разделяют на два типа: растровые и векторные.

При использовании растровой графики исходное графическое изображение в процессе кодирования разбивается на отдельные маленькие фрагменты - точки (пиксели), причём каждой точке присваивается код её цвета. Информация о каждой точке (код её цвета) хранится в видеопамяти компьютера. 

При использовании векторной графики изображение формируется из объектов (точка, линия, окружность, прямоугольник и т. д.), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул, объём.

Растр. Формирование изображения

Изображение на экране монитора, телевизора или напечатанное принтером на листе бумаги кажется нам непрерывным, сплошным.

Однако это не так!

Изображение состоит из отдельных светящихся или отражающих точек, т.е оно дискретизировано. Дискретизация-это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.

В этом можно убедиться, если близко посмотреть на экран телевизора : изображение состоит из отдельных светящихся точек красного, зеленого и синего цветов.

Соседние точки люминофора красного, зеленого и синего цветов образуют триаду точек, которая воспринимается нами как одна точка, цвет которой зависит от интенсивности составляющих цветов (RGB)

При формировании изображения на экране используются свойства нашего зрения:

Объекты, имеющие малое угловое разрешение, глаз не различает - они сливаются в один объект

Инертность зрения - глаз не успевает различить отдельные объекты, если они ”мелькают” перед глазами с частотой свыше 20 Гц (больше 20 объектов в секунду)

Модулированный электронный луч очень быстро пробегает экран монитора, формируя один кадр.

Расчет графического файла

Качество кодирования изображения зависит от 2-х параметров:

Во-первых, качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение

Во- вторых, чем больше количество цветов, то есть больше возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации).

Используемый набор цветов образует цветовую палитру.

Объем графического файла (картинки) зависит:

От числа пикселей в картинке, которое равно произведению ширины изображения (в пикселях) на его высоту.

От того, сколько бит информации необходимо для кодирования одного пикселя. Эта величина называется глубиной цвета.

ОБЪЕМ ФАЙЛА = A ЧB Ч I

где:

А - ширина изображения в пикселях;

В - высота изображения в пикселях;

I - глубина цвета в битах

Количество разрядов двоичного кода (бит), используемого для кодирования цвета точки, называется глубиной цвета, а количество точек в изображении по горизонтали и вертикали называется разрешающей способностьюэкрана.

В настоящее время используются значения глубины цвета 4, 8, 16 или 24 бит на точку и разрешающая способность экрана 640 х 480, 800 х 600, 1024 х 768 и 1280 х 1024 точек по горизонтали и вертикали, соответственно.

Глубина цвета

- это количество бит, отводимых для кодирования одного пикселя.

Если для кодирования одного пикселя взять:

1 бит, то с его помощью мы можем получить только 2 цвета: черный (0) и белый (1) , т.е. черно-белое изображение;

2 бита - 4 цвета (00,01,10,11);

8 бит - 28 цветов = 256 цветов …и т.д.

Таким образом, число цветов можно определить по формуле:

N=2I

N - количество цветов;

I - битовая глубина цвета.

Вывод

Чем больше бит применяется для кодирования 1 пикселя, тем больше цветов и реалистичнее изображение, но и размер файла тоже увеличивается.

Объем файла точечной графики - это произведение ширины и высоты изображения в пикселях на глубину цвета.

При этом совершенно безразлично, что изображено на фотографии. Если все три параметра одинаковы, то размер файла без сжатия будет одинаков для любого изображения.

  • Системы и технологии создания компьютерных изображений

    Структура графической системы. Монитор: общее понятие, разрешающая способность дисплея. Главная функция видеоадаптера. Особенности формирования цвета видеопиксела. Система кодирования цвета при помощи трех составляющих. Сущность понятия "палитра".

    презентация [57,9 K], добавлен 06.01.2014

  • Основы кодирования

    Представление информации в двоичной системе. Необходимость кодирования в программировании. Кодирование графической информации, чисел, текста, звука. Разница между кодированием и шифрованием. Двоичное кодирование символьной (текстовой) информации.

    реферат [31,7 K], добавлен 27.03.2010

  • Компьютерная графика

    Растровая и векторная графика. Растровые графические редакторы. Масштабирование растрового изображения. Средства хранения высокоточных графических объектов. Изменение масштаба без потери качества и практически без увеличения размеров исходного файла.

    презентация [652,8 K], добавлен 11.03.2015

  • Кодирование графической информации

    Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.

    реферат [20,7 K], добавлен 28.11.2010

  • Защита информации

    Компьютерная растровая и векторная графика. Графические редакторы. Форматы файлов для хранения растровых графических изображений. Особенности защиты информации в современных условиях. Идентификация и подлинность доступа в систему. Механизмы защиты.

    реферат [31,4 K], добавлен 26.01.2009

  • Векторное кодирование графической информации

    Знакомство с идеей векторного способа представления изображений в цифровом виде. Разработка последовательности команд для кодирования графического объекта. Основные команды; двоичное кодирование графической информации, растровый и векторный варианты.

    презентация [128,5 K], добавлен 05.01.2012

  • Представление графической и звуковой информации в ЭВМ

    Общие подходы к компьютерному представлению графической и звуковой информации. Растровая и векторная графика: характеристика, отличительные особенности, условия использования. Представление цветов в компьютере, существующие модели и их сравнение.

    презентация [2,3 M], добавлен 02.03.2016

  • Представление и кодирование информации

    Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека. Кодирование информации. Способы кодирования. Кодирование изображений. Информация в кибернетике. Свойства информации. Измерение количества информации.

    реферат [21,4 K], добавлен 18.11.2008

  • Графическая информация и средства ее обработки

    Общие сведения о графической информации: понятие и содержание, типы графики и их особенности (растровая, векторная и демонстрационная). Обзор современных программ обработки и просмотра графических изображений: Paint, Adobe Photoshop, PowerPoint.

    курсовая работа [50,4 K], добавлен 20.12.2013

  • Кодирование

    Оптимальное статистическое (экономное) кодирование. Основные понятия и определения теории кодирования. Принципы построения оптимальных кодов. Способность системы осуществлять прием информации в условиях наличия помех. Увеличение мощности сигналов.

    реферат [69,3 K], добавлен 09.07.2009

  • Источник: https://otherreferats.allbest.ru/programming/00045057_0.html

    2.5. Кодирование графической информации

    2.5. Кодирование графической информации

    Существует 2 подхода к представлению (оцифровке) графических данных:

    - растровый;

    - векторный.

    Графическая информация на экране монитора представляется в виде растрового изображения. Экран монитора можно представить в виде ячеек матрицы или элементов растра.

    Ячейка растра состоит из определенного количества точек – пикселей.

    Размер пикселя варьируется в зависимости от выбранного экранного разрешения или разрешающей способности (максимального количества пикселей по вертикали и горизонтали монитора).

    Примеры стандартных разрешений современных мониторов: 800?600, 1024 ? 768, 1280 ? 1024 и т.п.

    Цветные изображения на экране формируются в соответствии с двоичным кодом цвета каждого пикселя, информация о которых хранится в видеопамяти. Глубина цвета изображения определяется количеством битов, необходимым для кодирования цвета пикселя.

    Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита. Если каждый цвет пикселя рассматривать как возможное состояние, то количество цветов, может быть вычислено по формуле

    N = 2К,

    где К – глубина цвета в битах.

    Например, для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: светится (белый) – не светится (черный). Для его кодировки достаточно одного бита, например, 1 – белый, 0 – черный (21 = 2).

    Для кодировки 4-цветного изображения требуется два бита на пиксель, например: 00 – черный, 01 – красный, 10 – зеленый, 11 – коричневый (22 = 4).

    Недостатком растровой графики является большой объем памяти, требуемый для хранения изображения.

    При векторном представлении графических данных задается и сохраняется математическое описание каждого графического примитива – геометрического объекта, из которых формируется изображение.

    Недостатком векторной графики является невозможность работы с высококачественными художественными изображениями, фотографиями и фильмами. Поэтому основной сферой применения является представление в электронном виде чертежей, схем, диаграмм и т. д.

    Программы для работы с графическими данными подразделяются:

    - растровые графические редакторы – Paint, Photoshop;

    - векторные графические редакторы - Visio, Corel Draw.

    2.6. Кодирование звуковой информации

    Звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем звук громче для человека. Высота тона определяется частотой сигнала.

    Для компьютерной обработки непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов, т.е. закодирован. В процессе кодирования производится временная дискретизация звукового сигнала, т. е. разбиение продолжительности звуковой волны на отдельные временные участки. Для каждого такого участка устанавливается определенная величина амплитуды, которой присваивается код уровня громкости.

    Уровни громкости звука можно рассматривать как набор возможных состояний. Следовательно, с ростом кодированного количества уровней громкости воспроизводимое звучание будет более качественным.

    Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней (состояний) сигнала можно рассчитать по формуле:

    где I – глубина звука.

    Источник: https://StudFiles.net/preview/3208480/page:8/
    Интересное: