Категории

Использование частотных преобразователей

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51

Частотный преобразователь для электродвигателя

Где и почему применяют частотные преобразователи

Где применять преобразователи частоты?



Области применения частотных преобразователей
Ни для кого не секрет тот факт, что возможность осуществления регулировки скоростных характеристик двигателя, способна облегчить не только его управление, но и значительно приблизиться к оптимальным показателям, что приводит к ощутимому снижению эксплуатационных расходов. Это правило распространяется как на трехфазные, так и на однофазные электродвигатели.
Подробнее...
 
Области применения частотных преобразователей
Регулировка насоса достигается посредством ультразвукового датчика. В условиях нормальной работы в специальной емкости постоянно поддерживается определенный зафиксированный уровень согласно установке, которая была задана с графической панели управления.
Подробнее...
 
Области применения частотных преобразователей
Почти каждый винтовой компрессор использует золотниковый клапан для того, чтобы разгрузить компрессор. Вдоль всей длины ротора происходит перемещение золотника и уменьшается длина сжимаемой области. Отметим стандартный вид конструкции винтового компрессора. И хотя этот метод контроля за работой способствует бесступенчатой регулировке и достаточной степени управления показателями давления всасывания, внутри компрессора могут возникать значительные потери показателей мощности, которые связаны с работой золотника. Если снижается нагрузка компрессора, не случается пропорционального уменьшения показателей мощности.
Подробнее...
 
Области применения частотных преобразователей
Применение частотных преобразователей с целью управления холодопроизводительностью способствует высокой эффективности регулировки компрессоров, насосных агрегатов и вентиляторов. Благодаря использованию частотных преобразователей для контроля рабочего процесса за винтовыми компрессорами происходит:
Подробнее...
 
Области применения частотных преобразователей
Высокомощные преобразователи частоты для котельных
Использование привода с регулированием частот в насосных либо тягодутьевых механизмах, применяемых в котельных. Основное количество потребления электроэнергии (до шестидесяти процентов), приходится на тягодутьевые механизмы оборудования котельных. Поэтому, регулирование их параметров, способно оказать заметное влияние на потребляемую мощность и экономичный режим работы оборудования котельных.
Подробнее...
 
Области применения частотных преобразователей
Необходимо отметить постоянный объем жидкости, которая имеется в отопительных системах. Основная задача циркуляционного насоса в подобной системе – это доставка носителя тепло непосредственно потребителю тепла. Перепад показателей давления в подобных системах можно рассматривать как регулируемый параметр в подающих и обратных трубопроводах.
Подробнее...
 
Области применения частотных преобразователей
Преобразователи частоты обладают одним несомненным преимуществом в случаях, когда не существует прямой зависимости между скоростью вращения и моментом нагрузки, то есть, когда нагрузка в процессе эксплуатации, меняется на одинаковой частоте. Это преимущество – векторный метод управления двигателем, который актуален и в случаях при расширенном регулировании частоты при наличии номинальных моментов, к примеру, для момента 100 процентов – 0-50 Гц, а кратковременно даже 150-200 процентов от Мном. При правильном вводе паспортных величин двигателя, а также в случае успешного автотестирования, векторный метод не вызывает нареканий в работе.
Подробнее...
 
Области применения частотных преобразователей
Фиксация поплавковых датчиков происходит на определенном уровне совместно с замыканием сухого контакта в датчике. Затем происходит обработка сигналов, поступающих с датчиков с помощью кодового преобразователя и заведение на уровень цифровых входов частотного преобразователя. В качестве сигнала для частотного преобразователя о достижении необходимого уровня в аккумулирующем насосе в можно рассматривать замыкание контакта сухого типа.
Подробнее...
 
Области применения частотных преобразователей
Многоэтажные сооружения оснащены лестничными пролетами, предназначенными для ежедневного доступа в сооружение. Кроме того, они используются как пути эвакуации во время пожара.
Подробнее...
 


JPAGE_CURRENT_OF_TOTAL
Источник: http://www.i380.ru/-inverters/gde-primenjaut-pch.html

Статьи и схемы

Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.

Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.

Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.

Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.

Виды

По конструктивным особенностям частотные преобразователи делятся:

  1. Индукционные.
  2. Электронные.

Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.

Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей. При этом реализуются два возможных принципа управления:

  1. По определенной зависимости скорости от частоты тока.
  2. По способу векторного управления.

Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.

Конструктивные особенности

Преобразователь частоты имеет в составе основные модули:

  1. Выпрямитель.
  2. Фильтр напряжения.
  3. Инверторный узел.
  4. Микропроцессорная система.

Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.

Выпрямитель

Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.

Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.

Фильтр напряжения

Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.

Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Кирхгофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.

Инверторный модуль

Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.

Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.

Микропроцессорная система

В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.

Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.

Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.

Принцип действия

Основа работы инвертора состоит в двойном изменении формы электрического тока.

Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.

Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.

Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.

Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:

  1. Амплитудная.
  2. Широтно-импульсная.

Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.

При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.

Принцип подключения ключей на транзисторах

Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.

Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:

  • Радиопомехи.
  • Помехи от электрооборудования.

Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.

Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:

  • Ввод связи.
  • Контроллер.
  • Карта памяти.
  • Программа.
  • Дисплей.
  • Тормозной прерыватель с фильтром.
  • Охлаждение схемы вентилятором.
  • Прогрев двигателя.
Схемы подключения

Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.

Модели для 3-фазной сети рассчитаны на 380 вольт, и подают его на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.

Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.

Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.

При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.

Применение

Частотные преобразователи используются в устройствах с необходимостью регулировки скорости двигателя.

  • Приводы насосов. Уменьшает потери тепла и воды на 10%. Снижает количество аварий, защищает электродвигатели.
  • Вентиляционные системы. Экономия больше, чем при работе с насосами, так как для запуска мощных вентиляторов применяют мощные приводы агрегатов. Экономия появляется за счет снижения потерь на холостом ходу.
  • Транспортеры. Инверторы адаптируют скорость двигателя к скорости технологической системы, которая постоянно изменяется. Мягкий пуск повышает ресурс привода системы, так как нет ударных нагрузок, которые вредят оборудованию.
  • Компрессоры.
  • Дымососы.
  • Центрифуги.
  • Лифтовое оборудование.
  • Оборудование в деревообработке.
  • Робототехника.
Преимущества
  • Сглаживание работы мотора при запуске и торможении.
  • Возможность управления группой двигателей.
  • Плавное управление скоростью электродвигателей, без использования редукторов и других механических систем. Это позволяет упростить управление, сделать его дешевле и надежнее.
  • Используются совместно с асинхронными двигателями для замены приводов постоянного тока.
  • Образование многофункциональных систем управления приводами.
  • Изменение настроек непосредственно в работе, без останова.
Похожие темы:
комментарии:

Похожее

 

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/chastotnye-preobrazovateli/

Для чего нужен преобразователь частоты — задачи и преимущества частотника

Технические аспекты применения частотных преобразователей

В настоящее время, асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь – инвертор с ШИМ регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями. Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

  • фирменные преобразователи для конкретных типов оборудования.

  • универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.


Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

  • аналоговые — сигналы напряжения или тока (0...10 В, 0/4...20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;

  • дискретные сигналы напряжения или тока (0...10 В, 0/4...20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);

  • цифровые (данные) — сигналы напряжения (0...5 В, 0...10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;

  • релейные — контакты реле (0...220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Электромагнитная совместимость

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Чтение документации

Следует заметить, что хотя частотные преобразователи похожи друг на друга и освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Это может быть вам интересно: Регулируемый электропривод как средство энергосбережения

Источник: http://ElectricalSchool.info/econom/721-chastotnyjj-preobrazovatel-dlja.html
Похожие посты: